Incision of damaged versus nondamaged DNA by the Escherichia coli UvrABC proteins.
نویسندگان
چکیده
Incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires the UvrA, UvrB, and UvrC proteins as well as ATP hydrolysis. This incision reaction can be divided into three steps: site recognition, preincision complex formation, and incision. UvrAB is able to execute the first two steps in the reaction while the addition of UvrC is required for the incision of DNA. This incision reaction does not require ATP hydrolysis and results in the formation of a tight UvrABC post-incision complex and the generation of an oligomer of approximately 12 nucleotides. At high UvrABC concentrations the specificity of the incision for damaged DNA is decreased and significant incision of undamaged DNA occurs. Analogous to damage specific incision, this type of incision leads to generation of an oligonucleotide, but in this case the size is approximately 9 nucleotides in length. Further evidence shows that the combination of UvrB and UvrC proteins can generate a significant amount of a similar size product on undamaged DNA. In addition, the UvrC protein alone can generate a small amount of the same product. Immunological characterization of the weak nuclease activity seen with UvrC indicates that the activity is very tightly associated with the purified UvrC protein.
منابع مشابه
Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system
A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome perform damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated ...
متن کاملIncision of DNA-protein crosslinks by UvrABC nuclease suggests a potential repair pathway involving nucleotide excision repair.
DNA-protein crosslinks (DPCs) arise in biological systems as a result of exposure to a variety of chemical and physical agents, many of which are known or suspected carcinogens. The biochemical pathways for the recognition and repair of these lesions are not well understood in part because of methodological difficulties in creating site-specific DPCs. Here, a strategy for obtaining site-specifi...
متن کاملUvrAB activity at a damaged DNA site: is unpaired DNA present?
To study the activity of the Escherichia coli UvrA and UvrB nucleotide excision repair proteins during the formation of the pre-incision complex at a damaged DNA site, we used substrates with modifications around a single 2-(acetylamino)fluorene (AAF) lesion. Based on the release of AAF-containing oligonucleotides from a single-stranded DNA circle, we conclude that during interaction with our s...
متن کاملRepair of 4,5',8-trimethylpsoralen monoadducts and cross-links by the Escherichia coli UvrABC endonuclease.
Using an oligonucleotide model substrate, we observed two unusual mechanisms of UvrABC endonuclease in the repair of 4,5',8-trimethylpsoralen monoadducts and crosslinks. (i) UvrABC endonuclease usually incises a psoralen monoadduct only on the damaged strand. However, for one of the monoadducts we studied, incision on the complementary undamaged strand was also observed at a very low frequency,...
متن کاملThe repair of psoralen monoadducts by the Escherichia coli UvrABC endonuclease.
We have examined the interactions of UvrABC endonuclease with DNA containing the monoadducts of 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (TMP). The UvrA and UvrB proteins were found to form a stable complex on DNA that contains the psoralen monoadducts. Subsequent binding of UvrC protein to this complex activates the UvrABC endonuclease activity. As in the case of incision at pyri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 16 16 شماره
صفحات -
تاریخ انتشار 1988